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Abstract. This paper describes an unsupervised algorithm for segment-
ing categorical time series into episodes. The Voting-Experts algo-
rithm first collects statistics about the frequency and boundary entropy
of ngrams, then passes a window over the series and has two “expert
methods” decide where in the window boundaries should be drawn. The
algorithm successfully segments text into words in four languages. The al-
gorithm also segments time series of robot sensor data into subsequences
that represent episodes in the life of the robot. We claim that Voting-
Experts finds meaningful episodes in categorical time series because it
exploits two statistical characteristics of meaningful episodes.

1 Introduction

Though we live in a continuous world, we have the impression that experience
comprises episodes: writing a paragraph, having lunch, going for a walk, and
so on. Episodes have hierarchical structure; for instance, writing a paragraph
involves thinking of what to say, saying it, editing it; and these are themselves
episodes. Do these examples of episodes have anything in common? Is there a
domain-independent, formal notion of episode sufficient, say, for an agent to
segment continuous experience into meaningful units?

One can distinguish three ways to identify episode boundaries: First, they
may be marked, as spaces mark word boundaries and promoters mark coding
regions in DNA. Second, episodes may be recognized. For instance, we recognize
nine words in the sequence “itwasabrightcolddayinapriland”. Third we might
infer episode boundaries given the statistical structure of a series. For exam-
ple, “juxbtbcsjhiudpmeebzjobqsjmboe” is formally (statistically) identical with
“itwasabrightcolddayinapriland” — one is obtained from the other by replacing
each letter with the adjacent one in the alphabet — however, the latter is easily
segmented by recognition whereas the former requires inference.

This paper proposes two statistical characteristics of episode boundaries and
reports experiments with an unsupervised algorithm called Voting-Experts
based on these characteristics. We offer the conjecture that these characteris-
tics are domain-independent and illustrate the point by segmenting text in four
languages.
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2 The Episode Boundary Problem

Suppose we remove all the spaces and punctuation from a text, can an algorithm
figure out where the word boundaries should go? Here is the result of running
Voting-Experts on the first 500 characters of George Orwell’s 1984. The ?
symbols are induced boundaries:

Itwas ? a ? bright ? cold ? day ? in ? April ? andthe ? clockswere ? st ? ri ?
king ? thi ? rteen ? Winston ? Smith ? his ? chin ? nuzzl ? edinto ? his ? brea
? st ? in ? aneffort ? to ? escape ? the ? vilewind ? slipped ? quickly ? through
? the ? glass ? door ? sof ? Victory ? Mansions ? though ? not ? quickly ?
en ? ought ? oprevent ? aswirl ? ofgrit ? tydust ? from ? ent ? er ? inga ?
long ? with ? himThe ? hall ? ways ? meltof ? boiled ? cabbage ? and ? old ?
ragmatsA ? tone ? endof ? it ? acoloured ? poster ? too ? large ? for ? indoor
? dis ? play ? hadbeen ? tack ? ed ? tothe ? wall ? It ? depicted ? simplya ?
n ? enormous ? face ? more ? than ? ametre ? widethe ? faceof ? aman ? of ?
about ? fortyfive ? witha ? heavy ? black ? moustache ? and ? rugged ? ly ?
handsome ? featur

The segmentation is imperfect: Words are run together (Itwas, aneffort) and
broken apart (st ? ri ? king). Occasionally, words are split between segments
(to in en ? ought ? oprevent). Still, the segmentation is surprisingly good when
one considers that it is based on nothing more than statistical features of sub-
sequences of letters — not words, as no word boundaries are available — in
Orwell’s text.

How can an algorithm identify subsequences that are meaningful in a domain
lacking any knowledge about the domain; and particularly, lacking positive and
negative training instances of meaningful subsequences? Voting-Experts must
somehow detect domain-independent indicators of the boundaries of meaningful
subsequences. In fact, this is a good description of what it does. It implements
a weak theory of domain-independent features of meaningful units. The first of
these features is that entropy remains low inside meaningful units and increases
at their boundaries; the second is that high-frequency subsequences are more
apt to be meaningful than low-frequency ones.

3 Characteristics of Episodes

The features of episodes that we have implemented in the Voting-Experts
algorithm are called boundary entropy and frequency:
Boundary entropy. Every unique subsequence is characterized by the distri-
bution of subsequences that follow it; for example, the subsequence “en” in this
sentence repeats seven times and is followed by tokens c (4 times), t, s and ”, a
distribution of symbols with an entropy value (1.66, as it happens). In general,
every subsequence S has a boundary entropy, which is the entropy of the distri-
bution of subsequences of length m that follow it. If S is an episode, then the
boundary entropies of subsequences of S will have an interesting profile: They



will start relatively high, then sometimes drop, then peak at the last element of
S. The reasons for this are first, that the predictability of elements within an
episode increases as the episode extends over time; and second, the elements that
immediately follow an episode are relatively uncertain. Said differently, within
episodes, we know roughly what will happen, but at episode boundaries we be-
come uncertain.
Frequency. Episodes, recall, are meaningful sequences. They are patterns in
a domain that we call out as special, important, valuable, worth committing
to memory, worth naming, etc. One reason to consider a pattern meaningful
is that one can use it for something, like prediction. (Predictiveness is another
characteristic of episodes nicely summarized by entropy.) Rare patterns are less
useful than common ones simply because they arise infrequently, so all human
and animal learning places a premium on frequency. In general, episodes are
common patterns, but not all common patterns are episodes.

4 Related work

Many methods have been developed for segmenting time series. Of these, many
deal with continuous time series, and are not directly applicable to the problem
we are considering here. Some methods for categorical series are based on com-
pression (e.g., [1]), but compression alone finds common, not necessarily mean-
ingful, subsequences. Some methods are trained to find instances of patterns or
templates (e.g., [2, 3]) or use a supervised form of compression (e.g., [4]), but
we wanted an unsupervised method. There is some work on segmentation in the
natural language and information retrieval literature, for instance, techniques
for segmenting Chinese, which has no word boundaries in its orthography, but
again, these methods are often supervised. The method in [5] is similar to ours,
though it requires supervised training on very large corpora. The parsing based
on mutual information statistics approach in [6] is similar to our notion of bound-
ary entropy. [7] provides a developmentally plausible unsupervised algorithm for
word segmentation, but the procedure assumes known utterance boundaries. [8]
give an unsupervised segmentation procedure for Japanese, however it too sup-
poses known sequence boundaries. With minor alterations, their segmentation
technique is applicable to our domain, but we found that Voting-Experts
consistently outperforms it. We know of no related research on characteristics
of meaningful episodes, that is, statistical markers of boundaries of meaning-
carrying subsequences.

5 The Voting Experts Algorithm

Voting-Experts includes experts that attend to boundary entropy and fre-
quency and is easily extensible to include experts that attend to other charac-
teristics of episodes. The algorithm simply moves a window across a time series
and asks for each location in the window whether to “cut” the series at that
location. Each expert casts a vote. Each location takes n steps to traverse a



window of size n, and is seen by the experts in n different contexts, and may
accrue up to n votes from each expert. Given the results of voting, it is a simple
matter to cut the series at locations with high vote counts. Here are the steps
of the algorithm:
Build an ngram trie of depth n+1. Nodes at level i+1 of the trie represent
ngrams of length i. The children of a node are the extensions of the ngram
represented by the node. For example, a b c a b d produces the following trie of
depth 3:

*

a
2

b
2

c
1

d
1

a
1

c
1

d
1

b
2

Every ngram of length 2 or less in the sequence a b c a b d is represented by
a node in this tree. The numbers in the lower half of the nodes represent the
frequencies of the subsequences. For example, the subsequence ab occurs twice,
and every occurrence of a is followed by b.

For the first 10,000 characters in Orwell’s text, an ngram trie of depth 8
includes 33774 nodes, of which 9109 are leaf nodes. That is, there are over nine
thousand unique subsequences of length 7 in this sample of text, although the
average frequency of these subsequences is 1.1—most occur exactly once. The
average frequencies of subsequences of length 1 to 7 are 384.4, 23.1, 3.9, 1.8, 1.3,
1.2, and 1.1.
Calculate boundary entropy. The boundary entropy of an ngram is the en-
tropy of the distribution of tokens that can extend the ngram. The entropy of a
distribution for a discrete random variable X is

−
∑
x∈X

p(x) log p(x)

Boundary entropy is easily calculated from the trie. For example, the node
a in the tree above has entropy equal to zero because it has only one child, ab,
whereas the entropy of node b is 1.0 because it has two equiprobable children,
bc and bd. Clearly, only the first n levels of the ngram tree of depth n + 1 can
have node entropy scores.
Standardize frequencies and boundary entropies. In most domains, there
is a systematic relationship between the length and frequency of patterns; in
general, short patterns are more common than long ones (e.g., on average, for
subsets of 10,000 characters from Orwell’s text, 64 of the 100 most frequent
patterns are of length 2; 23 are of length 3, and so on). Our algorithm will
compare the frequencies and boundary entropies of ngrams of different lengths,
but in all cases we will be comparing how unusual these frequencies and entropies



are, relative to other ngrams of the same length. To illustrate, consider the words
“a” and “an.” In the first 10000 characters of Orwell’s text, “a” occurs 743 times,
“an” 124 times, but “a” occurs only a little more frequently than other one-letter
ngrams, whereas “an” occurs much more often than other two-letter ngrams. In
this sense, “a” is ordinary, “an” is unusual. Although “a” is much more common
than “an” it is much less unusual relative to other ngrams of the same length.
To capture this notion, we standardize the frequencies and boundary entropies
of the ngrams. To standardize a value in a sample, subtract the sample mean
from the value and divide by the sample standard deviation. This has the effect
of expressing the value as the number of standard deviations it is away from the
sample mean. Standardized, the frequency of “a” is 1.1, whereas the frequency
of “an” is 20.4. In other words, the frequency of “an” is 20.4 standard deviations
above the mean frequency for sequences of the same length. We standardize
boundary entropies in the same way, and for the same reason.

Score potential segment boundaries. In a sequence of length k there are
k − 1 places to draw boundaries between segments, and, thus, there are 2k−1

ways to divide the sequence into segments. Our algorithm is greedy in the sense
that it considers just k − 1, not 2k−1, ways to divide the sequence. It consid-
ers each possible boundary in order, starting at the beginning of the sequence.
The algorithm passes a window of length n over the sequence, halting at each
possible boundary. All of the locations within the window are considered, and
each garners zero or one vote from each expert. Because we have two experts,
for boundary-entropy and frequency, respectively, each possible boundary may
accrue a maximum of 2n votes. This is illustrated below.

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

i t w a s a c o l d . . .

0 0 3 0 21

A window of length 3 is passed along the sequence itwasacold. Initially,
the window covers itw. The entropy and frequency experts each decide where
they could best insert a boundary within the window (more on this, below). The
entropy expert favors the boundary between t and w, while the frequency expert
favors the boundary between w and whatever comes next. Then the window
moves one location to the right and the process repeats. This time, both experts
decide to place the boundary between t and w. The window moves again and
both experts decide to place the boundary after s, the last token in the window.
Note that each potential boundary location (e.g., between t and w) is seen n
times for a window of size n, but it is considered in a slightly different context
each time the window moves. The first time the experts consider the boundary



between w and a, they are looking at the window itw, and the last time, they
are looking at was. In this way, each boundary gets up to 2n votes, or n = 3
votes from each of two experts. The wa boundary gets one vote, the tw boundary,
three votes, and the sa boundary, two votes.

The experts use slightly different methods to evaluate boundaries and assign
votes. Consider the window itw from the viewpoint of the boundary entropy
expert. Each location in the window bounds an ngram to the left of the loca-
tion; the ngrams are i, it, and itw, respectively. Each ngram has a standardized
boundary entropy. The boundary entropy expert votes for the location that pro-
duces the ngram with the highest standardized boundary entropy. As it happens,
for the ngram tree produced from Orwell’s text, the standardized boundary en-
tropies for i, it, and itw are 0.2, 1.39 and 0.02, so the boundary entropy expert
opts to put a boundary after the ngram it.

The frequency expert places a boundary so as to maximize the sum of the
standardized frequencies of the ngrams to the left and the right of the bound-
ary. Consider the window itw again. If the boundary is placed after i, then
(for Orwell’s text) the standardized frequencies of i and tw sum to 1.73; if the
boundary is placed after it, then the standardized frequencies of it and w sum
to 2.9; finally, if it is placed after itw, the algorithm has only the standardized
frequency of itw to work with; it is 4.0. Thus, the frequency expert opts to put
a boundary after itw.
Segment the sequence. Each potential boundary in a sequence accrues votes,
as described above, and now we must evaluate the boundaries in terms of the
votes and decide where to segment the sequence. Our method is a familiar “zero
crossing” rule: If a potential boundary has a locally maximum number of votes,
split the sequence at that boundary. In the example above, this rule causes the
sequence itwasacold to be split after it and was. We confess to one embellish-
ment on the rule: The number of votes for a boundary must exceed an absolute
threshold, as well as be a local maximum. We found that the algorithm splits
too often without this qualification.

Let us review the design of the experts and the segmentation rule, to see
how they test the characteristics of episodes described earlier. The boundary
entropy expert assigns votes to locations where the boundary entropy peaks
locally, implementing the idea that entropy increases at episode boundaries. The
frequency expert tries to find a “maximum likelihood tiling” of the sequence, a
placement of boundaries that makes the ngrams to the left and right of the
boundary as likely as possible. When both experts vote for a boundary, and
especially when they vote repeatedly for the same boundary, it is likely to get a
locally-maximum number of votes, and the algorithm is apt to split the sequence
at that location.

6 Evaluation

In these experiments, induced boundaries stand in six relationships to episodes.

1. The boundaries coincide with the beginning and end of the episode;



2. The episode falls entirely within the boundaries and begins or ends at one
boundary.

3. The episode falls entirely within the boundaries but neither the beginning
nor the end of the episode correspond to a boundary.

4. One or more boundaries splits an episode, but the beginning and end of the
episode coincide with boundaries.

5. Like case 4, in that boundaries split an episode, but only one end of the
episode coincides with a boundary.

6. The episode is split by one or more boundaries and neither end of the episode
coincides with a boundary.

These relationships are illustrated graphically in Figure 1, following the con-
vention that horizontal lines denote actual episodes, and vertical lines denote
induced boundaries. The cases can be divided into three groups. In cases 1 and
4, boundaries correspond to both ends of the episode; in cases 2 and 5, they
correspond to one end of the episode; and in cases 3 and 6, they correspond to
neither end. We call these cases exact, dangling, and lost to evoke the idea of
episodes located exactly, dangling from a single boundary, or lost in the region
between boundaries.

We use both hit and false-positive rates to measure the accuracy of our
episode finding algorithms. To better explain the trade-offs between hits and
false-positives we employ the F-measure [9]. This standard comparison metric
finds the harmonic mean between precision and recall is defined as

F-measure =
2× Precision× Recall

Precision + Recall

where Recall is the hit-rate and Precision is the ratio of correct hits to proposed
hits. Note that the difference in proposed and correct hits yields the number of
false positives. Higher F-measures indicate better overall performance.

For control purposes we compare Voting-Experts with two naive algo-
rithms. The first generates a random, sorted sequence of boundaries that is

OR

OR ...

OR ...

OR ...

OR

OR ...

1

2

3

4

5

6

true episode

induced  boundary

Fig. 1. A graphical depiction of the relationships between boundaries and episodes.
Horizontal lines denote true episodes; their ends the correct boundaries. Vertical lines
denote induced episode boundaries.



equal in size to the actual number of episodes. We call this algorithm Random-
Sample. The second algorithm induces a boundary at every location. We call
this algorithm All-Locations.

In many of these experiments, we compare the results of Voting-Experts
with another unsupervised algorithm, Sequitur, which also finds structure in
categorical time series. Sequitur is a compression-based algorithm that builds
a context-free grammar from a string of discrete tokens [1]. It has successfully
identified structure in both text and music. This structure is denoted by the rules
of the induced grammar. Expanding the rules reveals boundary information. In
our experiments, expanding only the rule associated with the start symbol –
what we refer to as level 1 expansion – most often gives the highest F-measure.

6.1 Word Boundaries

We removed spaces and punctuation from texts in four languages and assessed
how well Voting-Experts could induce word boundaries. We take word bound-
aries as our gold standard for meaning-carrying units in text because they pro-
vide, in most cases, the most unambiguous and uncontentious denotation of
episodes. Clearly word prefixes and suffixes might also carrying meaning, but
most humans would likely segment a discrete stream of text into words.

Algorithm F-measure Hit Rate F.P. Rate Exact % Dangling % Lost %

Voting-Experts .76 .80 .27 .63 .34 .03

Sequitur .58 .58 .43 .30 .56 .14

All-Locations .36 1.0 .78 1.0 0.0 0.0

Random-Sample .21 .22 .79 .05 .34 .61

Table 1. Results of running four different algorithms on George Orwell’s 1984.

English We ran Voting-Experts, Sequitur, and both naive algorithms on
the first 50,000 characters of Orwell’s 1984. The detailed results are given in
Table 1. Voting-Experts performed best when the window length was 7 and
the threshold 4. The algorithm induced 12153 boundaries, for a mean episode
length of 4.11. The mean word length in the text was 4.49. The algorithm induced
boundaries at 80% of the true word boundaries (the hit rate) missing 20% of
the word boundaries. 27% of the induced boundaries did not correspond to word
boundaries (the false positive rate). Exact cases, described above, constitute
62.6% of all cases; that is, 62.6% of the words were bounded at both ends by
induced boundaries. Dangling and lost cases constitute 33.9% and 3.3% of all
cases, respectively. Said differently, only 3.3% of all words in the text got lost
between episode boundaries. These tend to be short words, in fact, 59% of the
lost words have length 3 or shorter and 85% have length 5 or shorter. In contrast,



all 89% of the words for which the algorithm found exact boundaries are of length
3 or longer.

Sequitur performed best when expanding only to the level 1 boundaries.
That is, it achieved its highest F-measure by not further expanding any non-
terminals off the sentential production. Expanding to further levels leads to a
substantial increase in the false positive rate and hence the overall decrease in
F-measure. For example, when expanding to level 5, Sequitur identified 78% of
the word boundaries correctly, 20% dangling and only 2% missed. This happens
because it is inducing more boundaries. In fact, at level 5, the false-positive
rate of 68% is near the 78% maximum false positive rate achieved by All-
Locations. The same behavior occurs to a smaller extent in Voting-Experts
when the splitting threshold is decreased. For example, with a window length
of 4 and a threshold of 2, Voting-Experts finds 74% of the word boundaries
exactly but the F-measure decreases because a corresponding increase in the
false-positive rate. In general, Sequitur found likely patterns, but these patterns
did not always correspond to word boundaries.

It is easy to ensure that all word boundaries are found, and no word is lost:
use All-Locations to induce a boundary between each letter. However, this
strategy induces a mean episode length of 1.0, much shorter than the mean word
length. The false-positive count equals the total number of non-boundaries in the
text and the false-positive rate converges to the ratio of non-boundaries to total
locations (.78). In contrast, Voting-Experts finds roughly the same number
of episodes as there are words in the text and loses very few words between
boundaries. This success is evident in the high F-measure (.76) achieved by
Voting-Experts. Not surprisingly, Random-Sample performed poorest on
the text.

The appropriate control conditions for this experiment were run and yielded
the expected results: Voting-Experts performs marginally less well when it is
required to segment text it has not seen. For example, if the first 10,000 charac-
ters of Orwell’s text are used to build the ngram tree, and then the algorithm
is required to segment the next 10,000 characters, there is a very slight decre-
ment in performance. The algorithm performs very poorly given texts of random
words, that is, subsequences of random letters. The effects of the corpus size and
the window length are shown in the following graph. The proportion of “lost”
words (cases 3 and 6, above) is plotted on the vertical axis, and the corpus
length is plotted on the horizontal axis. Each curve in the graph corresponds to
a window length, k. The proportion of lost words becomes roughly constant for
corpora of length 10,000 and higher.
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Said differently, corpora of this length seem to be required for the algorithm
to estimate boundary entropies and frequencies accurately. As to window length,
recall that a window of length n means each potential boundary is considered
n times by each expert, in n different contexts. Clearly, it helps to increase the
window size, but the benefit diminishes.

Further evidence of Voting-Experts ability to find meaningful word bound-
aries is given in Figures 2 and 3. In Figure 2 we graph the percentage of exact
word matches as a function of word length. For example, Sequitur exactly
matches 30% of words having length 15 while Voting-Experts matches 70%.
The curves converge at word length 17 because only two words in our corpus
have length 17 and both algorithms find only one of them. The curves roughly
mimic each other except in the word length interval from 2 to 4. In this period,
Voting-Experts accelerates over Sequitur because it finds disproportion-
ately more exact matches than Sequitur. This phenomenon is even easier to
see in Figure 3. Here cumulative percentage of exact word matches is plotted as
a function of word lengths and the distribution of word lengths is given behind
the curves. The slope of Voting-Experts is steeper than Sequitur in the in-
terval from 2 to 4 revealing the success it has on the most frequent word lengths.
Furthermore, words with length 2, 3, and 4 comprise over 57% of the Orwell cor-
pus, so at places where accuracy is perhaps most important, Voting-Experts
performs well.

Chinese, German and Roma-ji As a test of the generality of Voting-
Experts, we ran it on corpora of Roma-ji, Chinese and German texts. Roma-ji
is a transliteration of Japanese into roman characters. The Roma-ji corpus was
a set of Anime lyrics comprising 19163 characters. The Chinese text comes from
Guo Jim’s Mandarin Chinese PH corpus. The PH corpus is taken from stories
in newspaper texts and is encoded in in the standard GB-scheme. Franz Kafka’s
The Castle in the original German comprised the final text. For comparison
purposes we selected the first 19163 characters of Kafka’s text and the same
number of characters from 1984 and the PH corpus. As always, we stripped
away spaces and punctuation, and the algorithm induced word boundaries. The
window length was 6. The results are given in Table 2.
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Fig. 2. A comparison of exact match-rate on a per-word basis between Sequitur and
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Fig. 3. A comparison of cumulative exact match-rate over word length for Sequitur
and Voting-Experts. The background histogram depicts the distribution of word
lengths in the Orwell corpus.

Clearly the algorithm is not biased to do well on English. In particular, it
performs very well on Kafka’s text, losing only 4% of the words and identi-
fying 61% exactly. The algorithm performs less well with the Roma-ji text; it
identifies fewer boundaries accurately (i.e., places 34% of its boundaries within
words) and identifies fewer words exactly. Voting-Experts performed worst on
Chinese corpus. Only 42% of the boundaries were identified although the false
positive rate is an extremely low 7%. The explanation for these results has to
do with the lengths of words in the corpora. We know that the algorithm loses
disproportionately many short words. Words of length 2 make up 39% of the
Chinese corpus, 32% of the Roma-ji corpus, 17% of the Orwell corpus, and 10%
of the Kafka corpus, so it is not surprising that the algorithm performs worst on
the Chinese corpus and best on the Kafka corpus.



Voting-Experts F-measure Hit Rate F.P. Rate Exact % Dangling % Lost %

German .75 .79 .31 .61 .25 .04

English .71 .76 .33 .58 .38 .04

Roma-ji .65 .64 .34 .37 .53 .10

Chinese .57 .42 .07 .13 .57 .30

Table 2. Results of running Voting-Experts on Franz Kafka’s The Castle, Orwell’s
1984, a subset of the Chinese PH corpus of newspaper stories, and a set of Roma-ji
Anime lyrics.

If we incorporate the knowledge that Chinese words are rather short in length
by decreasing the splitting threshold, we can increase the F-measure of Voting-
Experts to 77% on the PH corpus. In general, knowledge of the mean episode
length can help improve the boundary detection of Voting-Experts. Like [8],
pretraining on a small amount of segmented text may be sufficient to find suitable
window and threshold values.

6.2 Robot Episodes

We ran Voting-Experts and Sequitur on a multivariate timeseries of robot
controller data comprising 17788 time steps and 65 unique states. Each state was
mapped to a unique identifier, and these tokens were given to the algorithm as
input. The timeseries data was collected with a Pioneer 2 mobile robot, equipped
with sonar and a Sony pan-tilt-zoom camera. The robot wandered around a
room-size playpen for 30 minutes looking for interesting objects. Upon finding
an object, the robot orbited it for a few minutes. The multivariate timeseries
consisted of eight binary variables representing different controllers in our agent
architecture. Each variable is 1 when its corresponding controller is active and
0 when its inactive, so potentially, we have 28 = 256 different states, but as
mentioned earlier, only 65 manifested during the experiment.

– MOVE-FORWARD
– TURN
– COLLISION-AVOIDANCE
– VIEW-INTERESTING-OBJECT
– RELOCATE-INTERSTING-OBJECT
– SEEK-INTERESTING-OBJECT
– CENTER-CHASIS-ON-OBJECT
– CENTER-CAMERA-ON-OBJECT

This timeseries can be broken up into five different observable robot behav-
iors. Each behavior represents a qualitatively different episode in the timeseries.
We denote these episodes as

– FLEEING
– WANDERING



– AVOIDING

– ORBITING-OBJECT

– APPROACHING-OBJECT

Table 3 summarizes the results of running Voting-Experts and Sequitur
on the robot controller data. The definition of hit-rate and false-positive rate is
slightly different here. Because the controller data can be noisy at the episode
boundaries, we allow hits a window of length 1 in either temporal direction.
For example, if we induce a boundary at location 10, but the actual boundary
is at location 9, we still count it as a hit. We also enforce a rule that actual
boundaries can only count once toward induced boundaries. For example, if we
induce a boundary at 8 and count it as a hit toward the actual boundary 9, the
induced boundary at 10 can no longer count toward 9.

The mean episode length in the robot controller data is 7.13. This length is
somewhat smaller than expected because the robot often gets caught up in the
corners of its playpen for periods of time and performs a series of wandering,
avoiding, and fleeing behaviors to escape. The total number of true episodes
was 2491. Voting-Experts induced 3038 episodes with a hit rate of 66% and
a false-positive rate of 46% for a combined F-measure of 59%. Like on Orwell,
Voting-Experts consistently outperforms Sequitur on the F-measure. Se-
quitur does best when expanding to the level 1 boundaries. The transition
from level 1 to level 2 produces a sharp increase in the false-positive rate with
a corresponding increase in hit rate, however the F-measure decreases slightly.
At level 5, Sequitur loses only 8% of the episodes but its false-positive rate is
78%, which is near the maximum possible rate of 86%.

Robot Data F-measure Hit Rate F.P. Rate Exact % Dangling Rate Lost Rate

Sequitur

Level 1 .55 .57 .47 .17 .37 .46
Level 2 .51 .77 .62 .34 .37 .29
Level 3 .32 .88 .71 .48 .33 .19
Level 4 .38 .94 .76 .56 .32 .12
Level 5 .36 .97 .78 .63 .29 .08

Voting-Experts

Depth 7, Threshold 4 .59 .66 .46 .20 .39 .41
Depth 9, Threshold 6 .59 .60 .41 .18 .38 .44
Depth 5, Threshold 2 .56 .80 .56 .27 .42 .31

Table 3. Results of running Sequitur and Voting-Experts on 30 minutes of robot
controller data.



7 Conclusion

For an agent to generalize its experiences, it must divide them into meaningful
units. The Voting-Experts algorithm uses statistical properties of categorical
time series to segment them into episodes without supervision or prior train-
ing. Although the algorithm does not use explicit knowledge of words or robot
behaviors, it detects episodes in these domains. The algorithm successfully seg-
ments texts into words in four languages. With less success, Voting-Experts
segments robot controller data into activities. In the future we will examine how
other, domain-independent experts can help improve performance. Additionally
we are interested in unifying the frequency and boundary entropy experts to more
accurately capture the balance of strengths and weaknesses of each method. On
a related note, we could employ supervised learning techniques to learn a weigh
parameter for the experts, however we favor the unification approach because it
removes a parameter from the algorithm and keeps the method completely un-
supervised, The idea that meaningful subsequences differ from meaningless ones
in some formal characteristics—that syntactic criteria might help us identify
semantic units—has practical as well as philosophical implications.
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